
A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

2 2

1 1

3 3

4 4

5 5

6 6

7 7

8 8

9 9

MINDSET/CULTURE
The ideas, customs, and social
behaviour of the environment
the team works in.

TRANSPARENCY
It is easy for others to see what
actions are performed and why.

WORK MODEL
How we work.

VALUES
What we value.

DECISION MAKING
When, where and how we make
decisions.

LEAN THINKING
Optimize the flow of work items
while respecting variation in the
system.

COMMUNICATION
Communication is the act of
conveying intended meanings
from one entity or group to
another using mutually under-
stood signs and semiotic rules.

TEAM ORGANISATION
The team and its environment
are set up in a way that they can
work.

TEAM
People working together in a
committed way to achieve a
common goal or mission. The work
is interdependent and the team
members share responsibility and
hold themselves accountable for
attaining the results. [MIT]

COMPOSITION
How we staff the product team.

COLLABORATION
How the product team works
together to build the product.

PRODUCT DISCOVERY
What product can we build that
has so much value that the
customer/user is willing to pay for?

PRODUCT PRODUCTION
Build the product.

PRECONDITIONS

Conditions a team must discuss
and agree upon in advance.

ENVIRONMENT
How to deal with the surroundings
of the product team.

PROCESS
The steps, decisions and actions we
make during product production.

ARCHITECTURE & DESIGN
Design the parts of the product
and their interactions.

CODE QUALITY
How easily the developers can
interact with the code base.

TEST DRIVEN DEVELOPMENT
Short iterations of transforming
part of a requirement into a
failing test, writing just enough
production code to make the
test succeed and refactoring the
code base for simplicity.

TEST AFTER
Tests are written after the produc-
tion code was written to increase
confidence that the code behaves
correctly.

USABILITY VALIDATION
Validate the intended use with
sample users.

NON-FUNCTIONAL TESTS
Test the way software operates,
not a specific functionality.

MONITORING
Define, measure and react to
metrics on the production
environment.

PRODUCT RELEASE
Ship the product to the customers
and users.

QUALITY ATTRIBUTES
These attributes define
quality. They cannot all
be maximized because
they are conflicting with
each other. Trade-offs
have to be made to find
a global optimum.

PRODUCT QUALITY
The attributes of the artefact we
build (based on ISO 25010).

 Functional Suitability – H3, H1, I1
 Performance Efficiency – N7, N8, K5
 Compatibility – N9, N8, R7
 Usability – M7, H2, H3
 Reliability – L2, M3, P8
 Security – N4, N8, P6
 Maintainability – O3, O6, Q4
 Portability – N3, S8, P9

SERVICE QUALITY
How our work is perceived by our
customers (partially based on SERVQUAL).

 Expectation – H7, P2, N2
 Effectiveness – H6, E7, H4
 Efficiency – J5, E7, C6
 Predictability – B5, C5, I6
 Reliability – K2, I9, Q3
 Responsiveness – S8, C4, F8
 Assurance – E4, E5, B6
 Empathy – B7, E5, D6
 Tangibles – L1, I2, J1

GULF OF LEGACY CODE

STREAM OF TEAM BUILDING

CHASM OF FAILED PRODUCTS

CAPE CONFLICT

R E E F O F
S U N K E N

I N N O V A T I O N
S H I P S

B U G B A Y

B R I D G E O F
C O N T I N U O U S

D E L I V E R Y

MINDSET/
CULTURE

TEAM

TEAM
ORGANISATION

LEAN
THINKING

COMMUNICATION

PRODUCT PRODUCTION

PRODUCT
RELEASE

PRODUCT
DISCOVERY

TRANSPARENCY

VALUES

DECISION
MAKING

WORK
MODEL

ENVIRONMENT

PROCESSPRECONDITIONS

TEST DRIVEN

TEST AFTER

USABILITY
VALIDATION

NON-FUNCTIONAL
TESTS

MONITORING

COMPOSITION

COLLABORATION

ARCHITECTURE & DESIGN

CODE QUALITY

All Goals
Visible

Simplicity

Idle Time
(Slack Time)

Small Steps

DevOps

Communication Map

Constructive
Feedback

Facts over
Assumptions

Low Number
of Queues

Pull
System

Design
Studio

Stakeholder
Management

Risk
Management

Standards

Rolling Wave
Planning

RACI
Matrix

Hexagonal/
Clean
Architecture

Evolutionary
Architecture/

Design

Design/
Architecture
Options

Design
System

Team Architecture
Workshops

Predictive &
Reflective Design

Modularization,
Decomposition/
Composition

Simple
Code

Coding
Conventions

Pair Programming/
Pairing/Teaming

(Mob Programming)Push/PR
ReviewSecurity

by Design

Compile
Time Safety
over Tests

Test Driven
Development

Behaviour
Driven
Development

Process
Boundary
Tests

Exploratory
Testing

System Parts
Interaction
Tests

Scenario Tests
Approval Tests

Defect Driven Testing

System Usability
Scale (SUS) Usability

Testing Performance
Testing

Security
Testing

Compatibility
Testing

Reliability
Testing

Installability
Testing

Team
Alignment
& Team
Autonomy

Team Charter

Version
Control

Continuous
Deployment

Configuration
Management

User/
Customer
Research

Product Change
Management

Root Cause
Analysis

Interoperability
Testing

Load Testing

System
Smoke
Testing

Low WiP
& WiP
Limits

Versioning
(Product)

RetrospectivesRespect

Psychological
safety

Continuous
Refactoring

Code
Review

Systems
Thinking

All Work
Visible

Sustainable
Pace

Positive
error

culture

Decision
Making

Methods

Lean
Startup

Decision
Making
Roles

Empirical
Decision
Making

Defer
Decisions

Decision
Log

Product
Focus

Diversity and
Inclusion

Continuous
Learning &
Improvement

Feedback
Cycles

Organizing
Teams

Incidents

System
Behaviour
Monitoring

Test
Tenants

Testing in
ProductionCommunities

(of Practices)

Document
Management

Cross-
functional

Teams

(T-/ -)M-
Shaped Team

Members
Team
End-to-End
Responsibility

Collaboration
on whole

Value Stream
Shared Task
Responsibility

Collective
(Code)
Ownership

Design
Thinking

User
Journey

Service
BlueprintCustomer

Journey

Product
Vision

Impact
Mapping

Product
Prototype

Empathy
Map

Business
Model Canvas

(Almost)
No Hand-
offs

Conflict
Management

Active
Listening

Continuous
Integration

Continuous
Delivery

Zero Bug
Policy

Definition
of Done

Decompose
Work Vertically
(by value)

Definition
of Ready

Continuous
Documentation

Feature
Toggles

SOFTWARE DEVELOPMENT QUALITY

This work by bbv Software Services AG is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
www.bbv.ch September 2023 V2.0

Legal Disclaimer: While we have made every attempt to ensure that the information in this publication has been obtained from reliable sources, bbv Software Services (bbv) is not responsible for any errors or omissions, or for the results obtained from the use of this information. All information is provided with no guarantee of completeness or accuracy, and
without warranty of any kind. In no event will bbv or its employees therefore be liable to you or anyone else for any decision made or action taken in reliance on the information in this publication. The information in this publication should not be used as a substitute for consultation with professional bbv advisors. Before making any decision or taking any action,
you should consult a bbv professional. The names of actual companies and products (e.g. bbv Software Services) mentioned in this publication may be the trademarks of their respective owners. This work by bbv Software Services AG is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) quality.bbv.ch

