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MINDSET/CULTURE
The ideas, customs, and social 
behaviour of the environment  
the team works in.

TRANSPARENCY
It is easy for others to see what 
actions are performed and why.

WORK MODEL
How we work.

VALUES
What we value.

DECISION MAKING
When, where and how we make 
decisions.

LEAN THINKING
Optimize the flow of work items 
while respecting variation in the 
system.

COMMUNICATION
Communication is the act of  
conveying intended meanings 
from one entity or group to 
another using mutually under-
stood signs and semiotic rules.

TEAM ORGANISATION
The team and its environment  
are set up in a way that they can 
work.

TEAM
People working together in a 
committed way to achieve a  
common goal or mission. The work  
is interdependent and the team 
members share responsibility and 
hold themselves accountable for 
attaining the results. [MIT]

COMPOSITION
How we staff the product team.

COLLABORATION
How the product team works 
together to build the product.

PRODUCT DISCOVERY
What product can we build that 
has so much value that the  
customer/user is willing to pay for?

PRODUCT PRODUCTION
Build the product.

PRECONDITIONS

Conditions a team must discuss 
and agree upon in advance.

ENVIRONMENT
How to deal with the surroundings 
of the product team.

PROCESS
The steps, decisions and actions we 
make during product production.

ARCHITECTURE & DESIGN
Design the parts of the product 
and their interactions.

CODE QUALITY
How easily the developers can 
interact with the code base.

TEST DRIVEN DEVELOPMENT
Short iterations of transforming 
part of a requirement into a  
failing test, writing just enough 
production code to make the  
test succeed and refactoring the 
code base for simplicity. 

TEST AFTER
Tests are written after the produc-
tion code was written to increase 
confidence that the code behaves 
correctly.

USABILITY VALIDATION
Validate the intended use with 
sample users.

NON-FUNCTIONAL TESTS
Test the way software operates, 
not a specific functionality.

MONITORING
Define, measure and react to  
metrics on the production  
environment.

PRODUCT RELEASE
Ship the product to the customers 
and users.

QUALITY ATTRIBUTES
These attributes define 
quality. They cannot all 
be maximized because 
they are conflicting with 
each other. Trade-offs 
have to be made to find 
a global optimum.

PRODUCT QUALITY 
The attributes of the artefact we  
build (based on ISO 25010).

 Functional Suitability – H3, H1, I1
 Performance Efficiency – N7, N8, K5
 Compatibility – N9, N8, R7
 Usability – M7, H2, H3
 Reliability – L2, M3, P8
 Security – N4, N8, P6
 Maintainability – O3, O6, Q4
 Portability – N3, S8, P9

SERVICE QUALITY
How our work is perceived by our  
customers (partially based on SERVQUAL).

 Expectation – H7, P2, N2
 Effectiveness – H6, E7, H4
 Efficiency – J5, E7, C6
 Predictability – B5, C5, I6
 Reliability – K2, I9, Q3
 Responsiveness – S8, C4, F8
 Assurance – E4, E5, B6
 Empathy – B7, E5, D6 
 Tangibles – L1, I2, J1
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